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Disclaimer

This document was prepared as an account of work sponsored by the United States
Government. While this document is believed to contain correct information, neither
the United States Government nor any agency thereof, nor The Regents of the
University of California, nor any of their employees, makes any warranty, express or
implied, or assumes any legal responsibility for the accuracy, completeness, or
usefulness of any information, apparatus, product, or process disclosed, or represents
that its use would not infringe privately owned rights. Reference herein to any specific
commercial product, process, or service by its trade name, trademark, manufacturer, or
otherwise, does not necessarily constitute or imply its endorsement, recommendation,
or favoring by the United States Government or any agency thereof, or The Regents of
the University of California. The views and opinions of authors expressed herein do not
necessarily state or reflect those of the United States Government or any agency
thereof or The Regents of the University of California.

This report documents the evaluation of five building energy baseline models, including
a proprietary model from Pulse Energy. This work does not comprise a product
endorsement or recommendation by the authors, or by Lawrence Berkeley National
Laboratory.



Evaluation of the Predictive Accuracy of Five Whole-Building Baseline Models

Jessica Granderson, Phillip Price
Lawrence Berkeley National Laboratory

Abstract

This report documents the relative and absolute performance of five baseline models
used to characterize whole-building energy consumption. The Pulse Adaptive Model’,
multi-parameter change-point, mean-week, day-time-temperature, and LBNL models
were evaluated according to a number of statistical ‘goodness of fit’ metrics, to
determine their accuracy in characterizing the energy consumption of a set of 29
buildings. The baseline training period, prediction horizon, and predicted energy
guantity (daily, weekly, and monthly energy consumption) were varied, and model
predictions were compared to interval meter data to determine the accuracy of each
model. Three combinations of baseline training periods and prediction horizons were
considered: 6 months of training to generate a 12-month prediction; 9 months of
training to generate a 7-month prediction; and 12 months of training to generate a 6-
month prediction.

Although there was no single best performer, the study results showed that the LBNL
model, the Pulse Adaptive Model, and the day-time-temperature model consistently
outperformed the mean-week, and industry standard change-point models. In
aggregate, across the three training and prediction periods that were considered, and
across the three energy quantities that were predicted, the median absolute percent
errors for these models ranged from 3-6% of the actual total metered energy
consumption. When considering the normalized root mean squared error, monthly
energy use was predicted with the least error, and daily energy was predicted with the
most error. For the LBNL, day-time-temperature, and Pulse Adaptive Model, these
errors ranged from 8-18%. As the training period increased and the prediction horizon
decreased, the model performance improved a few percent for any given model. Other
statistical metrics such as correlation, root mean squared error, and relative bias, were
included in the study, in addition to an assessment of the accuracy of Pulse Energy’s
reported 90% confidence intervals.

The methodology developed and applied for this study addressed baseline accuracy,
which comprises the first step in determining the uncertainty in the measurement and
verification (M&V) of gross, whole-building energy savings. Future work will expand the
analyses to account for uncertainty in the degree to which, excluding all effects but the
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EEMs, the building’s operation and energy use during the baseline period is equal to
that of the post-measure period. This will require data spanning a longer period of time,
from buildings where efficiency measures have been implemented. Since the dataset for
this study was limited to a small number of buildings, and not fully representative,
widely generalizable conclusions cannot be established. Therefore, future work will
focus on expansion of the number of datasets, and diversity of buildings to enable more
generalizable findings, disaggregation of different building types, and correlation of
errors with load variability.

1. Introduction

Whole-building baseline models are used for a variety of energy efficiency applications,
and associated analyses. These applications can be automated in software tools such as
energy information systems (EIS), and related analytical platforms. Since they
characterize the building’s ‘typical’ energy consumption relative to key factors such as
weather, these baselines may be used for longitudinal benchmarking, for real-time
energy anomaly detection, or for measurement and verification (M&V) of savings due to
peak load reduction or energy efficiency measures (EEMs). The accuracy requirements
of baselines and energy savings estimates depend on the particular application case. An
owner wishing to track over-time performance relative to internal efficiency goals is
likely to have much less stringent requirements than a regulated utility that offers
incentive programs for reductions in building energy use.

Measurement and verification of energy savings can be conducted in a number of ways,
as defined in the International Performance Measurement and Verification Protocol
(IPMVP) [EVO 2012]. Savings may be determined based on isolation of a retrofit or
efficiency measure, or based on more broadly encompassing measurements of whole-
building meter use, before and after a measure. Although smaller savings are more
easily obscured, and can be lost in the noise when using whole-building measurements,
the advent of massively available interval meter data has enabled the development of
more powerful baseline models, that those that have traditionally been used for whole-
building performance characterization.

This baseline evaluation study was motivated by two trends in building energy
efficiency. The first is the rapid growth in the number of commercially available energy
information systems - an emerging technology that can enable up to 20% building
energy savings, through continuous performance analysis, visualization, and feedback
with an engaged user [Granderson 2009]. The second is a growing interest in whole-
building focused utility programs, which in contrast to one-time single-measure
interventions include, for example, EIS and continuous performance optimization,
strategic energy management, and multiple-measure improvements. Although such
programs have begun to be piloted, key barriers to scaled implementation are questions
regarding the cost, accuracy, and time associated with the creation of whole-building
baselines, and their use in energy savings calculations. Moreover, technologies such as
EIS hold great promise, as they can enable deep energy savings, and automate the



creation of whole-building baselines; however the ‘black-box’ nature of proprietary
baseline methods has raised even deeper questions concerning the robustness of the
models and associated energy savings calculations.

The trends discussed above are leading to increasing use of baseline models for
evaluating energy savings, so understanding the reliability of those models is important.
This study established a preliminary methodology to evaluate the predictive accuracy of
whole-building baseline models, using statistical performance metrics, and metered
data from a test set of 29 buildings. This methodology was applied to evaluate the
relative and absolute performance of five whole-building baseline models, ranging from
simple to more sophisticated, and including a proprietary model from Pulse Energy, a
commercial EIS provider. An important contribution of this work is that the
methodology can be used to objectively assess the predictive accuracy of a model,
without needing to know the specific algorithm, or underlying form of the model.
Therefore, proprietary tools can be evaluated while protecting the developer’s
commercial intellectual property.

2. Methodology

To assess the performance of each of the baseline models, a 4-step evaluation
methodology was applied, as illustrated in Figure 1. This 4-step methodology represents
a standard evaluation method called ‘cross-validation’, in which the model is fit using
one set of data, the ‘training data’, and then used to predict data that were not included
in fitting the model. Measures of model fit were then quantified, and compared. The
Regional Technical Forum, California Public Utility Commission, and Portland Energy
Conservation Inc. (PECI) contributed feedback on the methodology and study design, to
encourage stakeholder acceptance.

In steps one and two, energy use predictions from several baseline models are
generated, including multi-parameter change-point models, a mean-week model, the
Pulse Adaptive Model, and the LBNL baseline regression model, each of which are
described in Section 2.1. In steps three and four, the predictive ability of each baseline
model is quantified, and the relative performance of each is evaluated.



(Step 1)

Vary baseline

(Step 2)

(Step 3)

(Step 4)

Pulse Adaptive Model

Quantify performance of

Interpret results,

inputs: predicted use vs. actual: evaluate models:
Baseline training pd Statistical metrics Model performance

- 6mo, 9mo, lyr Standard models: - Correl. coefficient relative to

Change-point, mean- - Normalized RMSE - Training period

Bldg characteristics week, day-time-temp - Relative total error - Prediction horizon

- load variability, - Uncertainty - Predicted energy

size, climate —> - Confidence Interval quantity
> LBNL model - Each other
Vary prediction bounds:
- Energy quantity
Metered energy use, — (daily, weekly,

monthly use)
- Prediction horizon
(10. 7. 4-mo)

weather data

Figure 1: Schematic representation of the 4-step study methodology

In Step 1, two parameters were varied to determine the predictive performance of the
baseline models across a diversity of conditions — the model training period, and the
characteristics of the buildings included in the analysis.
1. Baseline training period - the amount of data used to build the model
Each model was trained using 6, 9, and 12 months of weather data and metered
whole-building electric demand data. Given that the granularity of weather data
is typically hourly, metered energy use was also considered at hourly intervals.

2. Building characteristics

16 months of metered energy data from 29 buildings was used in the analysis.
For each set of data, according to all indications, no energy efficiency measures
(EEMs) had been implemented, and the operation of the building was
unchanged, representing a ‘constant’ set of energy use conditions. These
buildings are located in a variety of climates and geographic locations. The set of
29 buildings is largely comprised of commercial offices, but does include a small
number of non-office buildings. A summary of building characteristics is provided
in Appendix B, for sites where the information was available.

In Step 2, baseline models and predictions were generated. Weather data was
combined with meter data from the training period, to fit each baseline model. Once
the fit of the model was determined, weather data from the prediction period was then
used to generate model-predicted energy use for each building. For the Pulse Adaptive
Model, the baselines and associated predictions for each building were generated using
an application provided by Pulse Energy. The application inputs included weather data
and meter data from the training period, and weather data from the prediction period.



For the non-proprietary, industry-standard and LBNL models, LBNL used automated
programming scripts used to create the baselines and predictions. The models evaluated
in the study are detailed in Section 2.1.

In Step 3 the performance of each baseline model was characterized according to a
number of statistical performance metrics. The prediction bounds were varied according
to two parameters:

1. The quantity being predicted

Models were developed from hourly interval meter and weather data, and then

aggregated into daily, weekly, and monthly energy use predictions.

2. The prediction horizon - how far into the future predictions are made
16 months of metered energy use data was available for each of the 29 buildings
included in the evaluation. Since the training periods were fixed to 6, 9, and 12
months, the associated prediction horizons were 10, 7, and 4 months,
respectively.
The specific performance metrics that were used in the evaluation are detailed in
Section 2.2.

In Step 4 of the evaluation methodology, the performance of each model was
interpreted according to the set of statistical metrics computed in Step 3. The individual
performance of each baseline method was evaluated, and the results were used to
compare the methods relative to one another. The study parameters that were
explicitly considered in the performance evaluation were the baseline training period,
the prediction horizon, and the unit of prediction, i.e., daily, weekly, and monthly
energy use. Due to limitations on the number of cases that could be analyzed under the
scope of the study, hourly predictions were not considered.

2.1 Baseline Models

Five baseline models were evaluated in this study. These five models represent a sample
of proprietary commercial methods, and public domain industry-standard and
laboratory-developed methods that are used in the industry today. The mean-week
model, which assumes that every week is the same in terms of energy use as a function
of time, is the simplest model that might be used in practice. The change-point model
and the day-time-temperature regression model are commonly used for M&YV. The LBNL
model is a more sophisticated regression model than those normally used for M&V and
is thought by LBNL researchers to perform better than most models currently in use.
The mean-week, change-point, day-time-temperature, and LBNL models all conform to
requirement 5.2.10 of ASHRAE Guideline 14 [ASHRAE 2002], discussed in Section 4.2

Change-point (CP) models were the industry-standard before the advent of widely
available interval meter data, and therefore do not include time. Detailed in [ASHRAE
2002; Haberl 2005], these models relate energy use to ambient temperature, according
to a piecewise-continuous temperature response, with up to three temperature ranges.



For this study, the change points were chosen by optimization, allowing up to five
temperature ranges, each with its own temperature response. The change point
temperatures were determined so as to minimize the predictive error (not necessarily to
represent physical significance), subject to the constraint that change points must be at
least 4 F apart.

In the every-week-the-same model, also known as the mean-week (MW) model, the
predictions depend on day and time only. For example, the prediction for Tuesday at 3
PM is the average of all of the data for Tuesdays at 3 PM. Therefore, there is a different
load profile for each day of the week, but not, for example, for each week in a month.

The day-time-temperature (DTT) regression model includes time of day, day of week,
and two temperature variables to allow different heating and cooling slopes. The
temperature variables are defined as the number of degrees F below 50 F, and the
number of degrees above 65 F. The use of time-of-day and day-of-week variables is
described in [Energy and Environmental Economics 2011], in the context of more
complicated regression models that include special handling of, e.g. humidity and
holidays.

The Pulse Adaptive Model (PAM) is a proprietary algorithm that is included in Pulse
Energy’s commercially available energy information system (EIS), which uses weighted
averaging [Granderson 2009].

As described in [Mathieu 2011], the LBNL model is a regression model that includes time
of week, and a piecewise-continuous temperature response with fixed change points
that were set to 45, 55, 65, 75, and 85 F. Separate regressions were fit for ‘occupied’
and ‘unoccupied’ periods of the day. In [Mathieu 2011] the ‘occupied’ and ‘unoccupied’
periods were determined by visual inspection and used for determining different
temperature behavior for the two modes. For the current analysis the determination of
unoccupied and occupied periods was made by fitting a simple model similar to the day-
time-temperature model: a day of the week was defined to be ‘occupied’ if most of the
residuals from the simple model were positive (i.e., the building used more energy than
predicted), otherwise it was defined as ‘unoccupied’.

2.2 Baseline Model Performance Metrics
The statistical performance metrics that were considered in the study are collectively
referred to as ‘goodness-of-fit’ metrics. They are each described in the following:

The correlation coefficient (r) quantifies the extent to which high predictions are
associated with high data values, and low predictions are associated with low data
values. A value of one indicates that predictions and data are perfectly related by a
linear transformation, whereas a value of zero indicates no linear relationship between
the predictions and the data. A value of negative one indicates that the data and the
predictions are perfectly related by a linear transformation, but that high predicted



values map to low data values, and vice versa. A r value does not necessarily indicate
accuracy: if the predictions are exactly equal to 10 times the data, plus 1000, they are
very inaccurate but the correlation is perfect. The equation for r is provided in Equation
1, where E, is the actual metered energy use per unit time, E; is the model prediction,

E is the mean of the metered energy use per unit time, E is the mean of the model
prediction, and n is the total number of predictions in the prediction horizon.
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The root mean squared error (RMSE) quantifies the typical size of the error in the
predictions, in absolute units. In this study, mean kW was used as a convenient unit to
avoid the fact that different months have different numbers of days; since power is
energy per unit time, conversions between energy and power simply only required
simple multiplication or division by a constant. The equation for RMSE is provided in
Equation 2, where E, is the actual metered energy use per unit time, E; is the model
prediction, and n is the total number of predictions in the prediction horizon’.

Equation 2: RMSE =

The normalized root mean squared error (NRMSE) is the RMSE divided by the mean of
the data. This metric also quantifies the typical size of the error, but does so relative to
the mean of the data; for instance, a value of 0.1 means errors are typically about 10%
of the mean value. Note that this is the same metric that ASHRAE 14 refers to as
‘CV(RMSE)" [ASHRAE 2002]. The traditional statistical definition of ‘coefficient of
variation’, or CV, is the standard deviation of a set of numbers, divided by the mean of
that set of numbers. However, in the ASHRAE definition, the denominator is the mean
of the energy data, rather than the mean of the errors. To avoid confusion with the
traditional statistical terminology, this study uses the term ‘normalized RMSE’ rather
than ‘CV(RMSE)’. The equation for nRMSE is provided in Equation 3, where E; is the
actual metered energy use per unit time, E; is the model prediction, and n is the total
number of predictions in the prediction horizon.

>To quantify the RMSE of a model's predictions during the training period, i.e., relative to the data used to
fit the model, the denominator of the equation is (n-p), where p is the number of parameters in the
model. In contrast, the denominator is n when quantifying the model fit for the prediction period, as is
the case with the cross-validation approach used in this study.



Equation 3:  nRMSE =

The normalized mean absolute error (nMAE) is the mean absolute error divided by the
mean of the data. This metric is similar to nRMSE, but places less emphasis on extreme
values. The equation for nMAE is provided in Equation 4, where E; is the actual metered
energy use per unit time, E,is the model prediction, and n is the total number of
predictions in the prediction horizon.

n
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n
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Equation4: nMAE =

The relative bias (relBias) is the mean of the predictions divided by the mean of the
data. A value of 0.1 means that the prediction of the total energy used during the entire
prediction horizon is 10% higher than the actual value; a value of -0.15 means the
prediction is 15% lower. The equation for relBias is provided in Equation 5, where E; is
the actual metered energy use per unit time, E; is the model prediction, and n is the
total number of predictions in the prediction horizon.

Equation 5: relBias = — 12

The median relative total error (medRTE) indicates whether the model has a systematic
tendency to over- or under-predict. Suppose a model over-predicts one building by 10%
(0.1), gets one exactly right, and under-predicts another by 10%. The relative total errors
are thus 0.1, -0.1, and 0.0. The median of these is 0; that suggests that the modeling
approach does not have an overall bias, but is not a good way of quantifying the typical
error. The equation for medRTE is provided in Equation 6, where E; is the actual
metered energy use per unit time, E; is the model prediction, and n is the total number
of predictions in the prediction horizon.
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Equation 6:  medRTE = median{~———~

Relative to the median relative total error, the median of the absolute relative total
error (med(absRTE)) is a better metric to understand the typical error in the prediction
of total energy use over the prediction horizon. The equation for med(absRTE) is given
in Equation 7, where E, is the actual metered energy use per unit time, E, is the model
prediction, and n is the total number of predictions in the prediction horizon. Continuing
the example above, suppose a model over-predicts one building by 10% (0.1), gets one
exactly right, and under-predicts another by 10%. The absolute relative total errors are
thus 0.1, 0.0, and 0.1, and the median is .1, or 10%.

E, -Ei‘

Equation 7:  med(absRTE) = median

i

The final metric, quantiles of residuals (2.5%,10%, 50%, 80%, 97.5%), are helpful in
characterizing the statistical distribution of the residuals, rather than just their typical
size, as is true of the mean and median error metrics.

2.3 Study Validity and Confidence Intervals

Pulse Energy provided some of the 16-month metered building data that was used in
study. To maintain study rigor and validity, it was necessary to verify that Pulse Energy
did not artificially alter the predictions that they generated, in the cases for which they
provided the study data, as they could have adjusted their predictions to provide a
better match. (For the data sets that LBNL contributed to the study, Pulse Energy did not
have access to meter data from the prediction horizon.) Therefore, the study
methodology included an analysis to confirm that the relative total error and normalized
root mean squared error were no better for the buildings provided by Pulse Energy than
for the others.

Pulse Energy also provided the research team with 90% confidence intervals for the
predictions of the Pulse Adaptive Model. Therefore, the research team also validated
whether in fact the metered data was truly within the (prediction +/- confidence
interval), 90% of the time.

3. Results

The presentation of results from the comparative model assessment focuses on nRMSE
and median absolute relative total error. These are the metrics most critical to
understanding the uncertainty in measurement and verification of energy savings, using
baseline models. However, summary tables for the full set of performance metrics
considered in the study are provided in Appendix A, including quantiles of residuals.
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3.1 Normalized Root Mean Squared Error

The normalized root mean square error for each model, predicted energy quantity, and
training period are summarized in Table 1. Since this metric quantifies the typical size of
the error relative to the mean of the data, a value of 0.1, for example, indicates that
errors are typically about 10% of the mean value.

Table 1. nRMSE for each model, predicted quantity, and training period

Predicted Quantity Relative 6-mo training 9-mo training 12-mo training
Performance period, 10-mo period, 7-mo period, 4-mo
energy prediction | energy prediction | energy prediction
Daily Energy Use Best PAM (.16) DTT (.17) LBNL (.13)
DTT (.18) LBNL (.17) PAM (.14)
LBNL (.19) MW (.18) DTT (.17)
MW (.20) PAM (.19) MW (.18)
Worst CP (.25) CP (.22) CP (.24)
Weekly Energy Use Best DTT (.13) DTT (.10) LBNL (.10)
LBNL (.13) PAM (.13) DTT (.12)
PAM (.13) LBNL (.14) PAM (.12)
MW (.16) CP (.15) MW (.13)
Worst CP (.17) MW (.15) CP (.17)
Monthly Energy Use | Best LBNL (.09) DTT (.08) LBNL (.08)
DTT (.10) LBNL (.09) PAM (.10)
PAM (.10) PAM (.10) DTT (.11)
MW (.14) CP (.11) MW(.12)
Worst CP (.14) MW (.13) CP (.18)

Overall, the LBNL, Pulse Adaptive Model, and day-time-temperature model have smaller
errors than that the mean-week and change-point models. The differences between the
three best models are quite small, on the order of a percentage points. Across the
entire data set, the nRMSE from the Pulse Adaptive Model range from 10-19% of the
mean; nRMSE from the LBNL model range from 8-19% of the mean, and the nRMSE
from the DTT model range from 8-18% of the mean. Monthly energy use was predicted
with the least error, and daily energy was predicted with the most error. As the length
of the prediction period decreases, the error in predicted energy use decreases;
however, again, the differences were small, only on the order of a couple of percentage
points for any given model.

Another useful view into the data, is to consider pair-wise comparisons of nRMSE for the
different models in the study, with each of the 29 buildings explicitly represented as a
single point. Points that fall directly on the 45-degree line indicate cases in which the
error is the same for both models; points above or below the line indicate cases in which
one model had higher or lower error than the other. Points near the lower left corner
indicate buildings for which both models resulted in smaller predictive errors, while
those near the upper right correspond to higher predictive errors. Any two models can

12



be compared using such plots; in Figures 2 through 4, the nRMSE for the LBNL, DTT, and
change-point models are plotted relative to the Pulse Adaptive Model.
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Figure 4: nRMSE of the Pulse Adaptive Model vs. the change-point (CP) model - daily, weekly, and
monthly energy use predictions for 6-month, 9-month, and 12-month training periods.

3.2 Median Absolute Relative Total Error

The median absolute relative total error for each model, training period, and prediction
horizon is summarized in Table 2. To compute this metric, the percent difference
between the total predicted energy use (for the entire prediction period), and the actual
energy use is determined, and the absolute value taken. This is done for each building in
the study, and the median value reported. Therefore, a value of .04 for example, would
indicate that the median error in total predicted energy use across the set of 29
buildings, was 4% of the actual energy use.
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Table 2. Median Absolute Relative Total Error for Each Model, Training Period, and Unit of Prediction

Relative 6-mo training period, 9-mo training period, 12-mo training period,
Performance 10-mo energy prediction | 7-mo energy prediction 4-mo energy prediction
Best MW (.030) DTT (.039) PAM (.035)

LBNL (.032) MW (.049) LBNL (.041)

DTT (.034) CP (.052) DTT (.046)

PAM (.037) LBNL (.055) CP (.065)
Worst CP (.051) PAM (.061) MW(.065)

Across all of the models, training periods and prediction periods, the median absolute
percent error in predicted energy use ranged from 3% to 7%. Interestingly for M&V
applications, the total error was smallest for a shorter training period and a longer
prediction horizon, and was largest when the training period was much longer than the
prediction horizon.

The relative performance of each model was mixed, varying with the training period and
prediction horizon. Across the three different training and prediction periods, median
absolute percent errors for the models were:

Day-time-temperature model, 3-5%

LBNL model, 3-6%

Pulse Adaptive Model, 4-6%

Mean-week model, 3-7%

Change-point model, 5-7%

3.3 Correlation

The error metrics discussed in 3.1 and 3.2 were concerned with how accurately daily,
weekly, and monthly, and total energy use could be predicted. The performance metrics
also included the correlation between predictions and data (see Appendix A).
Correlation is a measure of the extent to which high predictions correspond to high data
values and low predictions correspond to low data values. Correlation is not the same as
accuracy, and therefore a less critical metric for this study. For example, if the
predictions were always twice as high as the data, the accuracy would be poor, but the
correlation would be perfect.

The results show that the Pulse Adaptive Model, LBNL, and DTT models all vastly
outperform the change-point model and the mean-week model by this measure.
Metered energy use was indeed high for the months, weeks, and especially the days for
which these models predicted high consumption.

3.4 Study Validity and Pulse Adaptive Model Confidence Intervals

3.4.1 Study Validity

Figure 5 plots the Relative Total Error from the Pulse Adaptive Model versus the Relative
Total Error for the LBNL model, with colors indicating which building data were provided
by Pulse Energy and which were from other sources. Had Pulse Energy artificially
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improved the model predictions in the cases where they provided the data, and thus
had access to the meter data from the prediction period, the error from the Pulse
Adaptive Model would be closer to 0 for the buildings that Pulse Energy provided, than
for the others. That is, the model predictions would be systematically better than for the
data that Pulse Energy did not provide. That is not in fact the case: when the LBNL
model does poorly on this prediction, so does the Pulse Adaptive Model (points in the
plot fall along the diagonal line), and to the same extent whether Pulse Energy knows
the right answer or not (data from Pulse Energy and the other sources are equally
distributed above and below the diagonal line). Similar investigations were conducted
using the nRMSE metrics, and there is no evidence that the validity of the study was
compromised.

All buildings, 9 months of training data
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Figure 5: Relative total error for the LBNL versus Pulse models for 9 months of training data.

3.4.2 Confidence Interval

Although confidence intervals for any of the models could have been generated, the
study scope prevented doing so. However, Pulse Energy does provide 90% confidence
intervals for predictions from the Pulse Adaptive Model.

For each building, each amount of training data, and each unit of energy prediction, the
fraction of predictions over the upper bound or below the lower bound was calculated.
The histograms in Figure 6 show the fraction of days, weeks, or months under the lower
bound or above the upper bound, for the Pulse Adaptive Model, for the case of 9
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months of training data. For the 90% confidence interval, each histogram would ideally
show that for every building, 5% of daily, weekly, or monthly energy use was below the
lower bound and another 5% was above the upper bound. Systematically, however,
more than 5% of actual data values exceed the upper bound, and more than 5% are less
than the lower bound. This is true whether the predictions are for days, weeks, or
months.
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Figure 6: Histograms to assess the accuracy of reported confidence intervals for predictions from the
Pulse Adaptive Model, using 9 months of training data.

Across each of the training periods analyzed, rather than 5%, 10% of the daily energy
predictions exceeded the upper bound of the confidence interval, and 11% were below
the lower bound. For the weekly predictions, 11% exceeded the upper bound, and 12%
were below the lower bound. The difference was greatest for monthly energy, where
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12% of the predictions exceeded the upper bound, and 15% were below the lower
bound.

It is rather difficult to precisely identify confidence intervals, so a mild systematic error
might be expected. The results do show that Pulse Energy’s confidence intervals are too
narrow: systematically, more than 5% of actual data values exceed their high bound,
and more than 5% are lower than their lower bound. This is true whether the
predictions are for days, weeks, or months. Interestingly, if the claimed confidence
bounds were 80% bounds rather than 90% bounds, these medians would be very close
to correct. Of course, for any individual building the results can differ greatly from the
median. In fact, for some extreme cases as many as 75% of the predictions are below
the lower bound, and for others as many as 75% of the predictions exceed the upper
bound.

Although the confidence bounds are much too narrow for many individual buildings,
and much too wide for some others, on average the approach correctly identifies which
buildings need wide confidence bounds, and which buildings need narrow ones.

4. Discussion

In interpreting the study results, the focus of the discussion is the relative performance
of the five baseline models according to key fitness metrics, and the extent to which the
Pulse Adaptive Model is compliant with ASHRAE Guideline 14.

4.1 Relative Model Performance

Given the limited dataset and the non-representative nature of the data, widely
generalizable conclusions cannot be drawn. However, the results of the study do
indicate that the Pulse Adaptive Model, LBNL model, and day-time-temperature (DTT)
models perform very similarly relative to the statistical metrics considered in this
evaluation. They tend to out-perform the change-point and mean-week models, but on
average performed equally well relative to one another. Were the change-point models
used in this study limited to fewer than five temperature ranges, as in the standard
modeling case (see Section 2.1), the change-point models would likely have performed
slightly worse than in this study, leading to an even larger performance advantage for
the Pulse and LBNL models.

There are several sources of temporal variation in building load that provide insight into
the performance, or fit of each model.

1. Daily or weekly periodicity; this is very large for most buildings.

2. Temperature-dependence; this is small but not negligible for most buildings.

3. Other variation not explained above; this is small for most buildings, but

moderate for others and very large for a few.

The mean-week model captures only number 1, the regular variation from one hour to
the next within a week. The change-point model captures only number 2, the
temperature-dependence. Over time, the daily and weekly periodicity cancel out, so
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while the change-point model performs decently for long aggregation periods such as
montbhs, it performs very poorly for individual days. In contrast, the LBNL model, day-
time-temperature model, and Pulse Adaptive Model capture number 1 and number 2.
None of the models capture number 3, or can hope to do so, since this is variation that
is not predicted by any explanatory variable available to the model. This is why the LBNL
model and the and Pulse Adaptive Model both perform poorly on those buildings whose
energy use varies in ways that aren’t predictable from the outdoor temperature or the
time of the week. The current dataset is too small to determine whether certain building
sizes or types tend to have more unpredictable energy usage.

Although the change-point and mean-week models performed substantially worse than
the others on average, even the mean-week model performed surprisingly well in an
absolute sense. For instance, when a 12-month training period was used, and
predictions were for monthly energy consumption the median nRMSE for the mean-
week model was 12%, but the Pulse Adaptive Model and LBNL model had errors nearly
as large, at 10% and 8%. The mean-week model also fared within a few percentage
points of the other models in terms of median percent error in total predicted energy
use.

It does not appear, however, that the somewhat poorer performance of the mean-week
model is simply a statistical artifact due to the small sample size - unlike the difference
between the LBNL and Pulse Adaptive Model, which might be. One indication of the
inferiority of the mean-week model is that the poorer performance carries across all
lengths of training periods and over predictions for days, weeks, and months.
Conversely, the LBNL, DTT, and Pulse Adaptive models often switch ranks on the various
metrics and various analyses. Furthermore, the mean-week model does not contain any
temperature information at all, so there is a strong expectation that it will not perform
as well as the other models. The change-point model also does not perform as well as
the Pulse Adaptive Model, LBNL, and DTT models.

In terms of the median absolute percent error in total energy use over the full
prediction horizon, the relative performance of each model was mixed, and depended
on the length of the training period and prediction horizon. The difference between the
LBNL, Pulse Adaptive Model and DTT models was only a couple of percentage points,
and typical errors ranged from only 3-6% across the three cases considered.

In addition to the models’ ability to accurately predict daily, weekly, monthly, and total
energy use, the study also evaluated correlation between model predictions and
metered data. Again, LBNL, Pulse Adaptive Model, and DTT models all vastly
outperformed the change-point and mean-week models - the months, weeks, and
especially days that for which the models predicted high energy use did indeed have
high metered energy use, and vice versa.
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4.2 Compliance with ASHRAE Guideline 14
ASHRAE Guideline 14 [ASHRAE 2002] defines two quantitative requirements for whole-
building M&V:

1. Guideline 5.2.10 requires a ‘net determination bias’ less than 0.005%. Net
determination bias is defined as the sum of the prediction errors divided by the
sum of the load data (and multiplied by 100 to make a percent), where the sum
is over the entire baseline period.

2. Guideline 5.3.2.1e states “The baseline model shall have a maximum CV(RMSE)
of 20% for energy use and 30% for demand quantities when less than 12 months
of post-retrofit data are available for computing savings. These requirements are
25% and 35%, respectively, when 12 to 60 months of data will be used in
computing savings.” .

The first requirement is extremely restrictive. It severely limits the range of approaches
that can be used for creating baselines. The LBNL, mean-week, change-point, and day-
time-temperature models all meet this criterion, which was one factor in including them
in the study. LBNL did not have access to predictions from Pulse Energy’s training
period, and as such was not able to validate compliance. One limitation of this
requirement is that even reasonable modifications that would likely improve model
performance could result in non-compliance. For instance, since building performance
changes with time, it might make sense to give more statistical weight to later data
points than to earlier ones, however Guideline 5.2.10 essentially requires all points to be
weighted equally. This requirement is particularly restrictive, considering that an
alternative method for creating baseline predictions — calibrated whole-building
simulation — allows 5% bias, a factor of 1000 higher than is allowed with statistical
approaches.

Both requirements one and two are based on comparing the model’s predictions to the
data that were used to fit the model. As such, neither is amenable to independent
validation in a strict sense: a modeler can always adjust their predictions post facto to
make them comply with the guidelines. Although LBNL did not have access to
predictions from Pulse Energy’s training period, and therefore was unable to validate
compliance, we note that when applied to data that were not used to fit the model, the
Pulse Adaptive Model is no more biased than the other models.

Although it was not possible to independently test whether the Pulse Adaptive Model
complies with these requirements, the study results indicate that in general, the Pulse
Adaptive Model predicts energy use more accurately than change-point models. In turn,
well-fit change-point models are one of the best-practice modeling approaches
referenced in Guideline 14. The ability to accurately predict energy use beyond the
training period is in many respects, a more relevant test of the real-world usefulness
(and lack of bias) in the model. While the Guideline 14 requirement 5.3.2.1e refers to
the training period, for the prediction period, the LBNL model, day-temperature-time
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model, and Pulse Adaptive Model all comfortably meet required threshold for most of
the buildings in this data set; all fail to meet the requirement for the most unpredictable
buildings.

5. Conclusion

This study leveraged the data from 29 buildings, spanning a diversity of climates, sizes,
and geographical locations, to evaluate the uncertainty in energy use predictions from
five baseline models. The methodology developed and applied for this study comprises
the first step in determining the uncertainty in the measurement and verification (M&V)
of gross, whole-building energy savings.

Relative to the statistical performance metrics that were evaluated in this study, the
Pulse Adaptive Model, LBNL model, and day-time-temperature models all outperformed
the change-point models. This has important implications for whole-building M&V, as
change-point models are the traditional industry-standard whole-building modeling
approach. However, since the dataset for this study was limited to a small number of
buildings, and not fully representative, widely generalizable conclusions cannot be
established.

6. Future Work

Future work will focus on expansion of the number of datasets, and diversity of
buildings to enable more generalizable findings, disaggregation of different building
types, and correlation of errors with load variability. In addition, including more
proprietary models will provide further insights into the robustness of commercial tools
that promise to automate the creation of baselines for purposes such as continuous
anomaly detection, and whole-building measurement and verification.

The uncertainty in the measurement and verification of whole-building energy savings
that are calculated in a manner commensurate with IPMVP Option C [EVO 2012]
depends on two key factors:

1. The accuracy of model predictions of building energy use, according to the
operation of the building during the model training period, prior to the energy
efficiency measures. This is the accuracy that was addressed in this study.

2. The degree to which, excluding all effects but those associated with the EEMs,
the building’s operation and energy use during the baseline period, is equal to
that of the post-measure period.

This study considered only the first factor; future work will address the second factor as
well, requiring data from a number of buildings in which EEMs have been implemented.
This will entail permit quantification of the uncertainty in both the baseline model, as
well as the energy savings that the baseline is used to calculate.
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Appendices
Appendix A: Detailed Statistical Performance Metrics

Detailed statistical performance metrics for each of the baseline models are provided in
Tables Al- A10. Tables A1-A3 summarize the median model performance for daily
energy use predictions, Tables A4-A6 correspond to weekly energy predictions, and
Tables A7-A9 correspond to monthly energy predictions. Table A10 summarizes the
relative total error for each model, training period, and prediction horizon.

Table Al. Median model performance over entire data set, daily energy predictions, 6-month training
period, 10-month prediction horizon

Model r nRMSE | relMAE | relTotErr 2.50% 10% 50% 90% | 97.50%
PAM 0.765 0.157 0.116 0.011 | -0.198 | -0.125 | 0.013 | 0.151 0.398
LBNL 0.779 0.189 0.131 -0.008 -0.2 | -0.115 | -0.007 | 0.169 0.326
DTT 0.716 0.178 0.124 0.012 | -0.203 | -0.113 | 0.009 | 0.178 0.312
CP 0.189 0.245 0.206 0.016 | -0.382 | -0.235 | 0.003 | 0.321 0.446
MW6 0.483 0.204 0.162 0.009 | -0.324 | -0.174 | 0.008 | 0.174 0.297

Table A2. Median model performance over entire data set, daily energy predictions, 9-month training
period, 7-month prediction horizon

Model r nRMSE | relMAE | relTotErr 2.50% 10% 50% 90% | 97.50%
PAM 0.743 0.178 0.12 0.026 | -0.196 | -0.125 | 0.012 | 0.189 0.325
LBNL 0.753 0.172 0.133 0.013 | -0.204 | -0.114 | 0.011 | 0.183 0.334
DTT 0.746 0.171 0.129 0| -0.211 | -0.118 | -0.004 | 0.183 0.302
CP 0.006 0.217 0.186 -0.013 | -0.328 | -0.223 | -0.042 | 0.285 0.389
MW 0.558 0.177 0.124 -0.012 | -0.222 | -0.113 | -0.008 | 0.132 0.207

Table A3. Median model performance over entire data set, daily energy predictions, 12-month training
period, 4-month prediction horizon

Model r nRMSE | relMAE | relTotErr 2.50% 10% 50% 90% | 97.50%
PAM 0.731 0.144 0.108 -0.008 | -0.219 | -0.146 | -0.012 0.13 0.263
LBNL 0.795 0.13 0.099 -0.013 | -0.196 | -0.131 | -0.007 0.14 0.247
DTT 0.741 0.167 0.119 -0.01 | -0.176 | -0.112 | -0.006 | 0.158 0.279
CP 0.088 0.238 0.191 -0.036 | -0.343 | -0.294 | -0.057 | 0.249 0.353
MW 0.743 0.18 0.153 -0.011 -0.195 | -0.121 -0.02 0.097 0.146
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Table A4. Median model performance over entire data set, weekly energy predictions, 6-month training
period, 10-month prediction horizon

Model r nRMSE | relMAE | relTotErr 2.50% 10% 50% 90% | 97.50%
PAM 0.489 0.131 0.103 0.011 | -0.164 | -0.092 0.01 | 0.139 0.229
LBNL 0.558 0.13 0.109 -0.008 | -0.128 | -0.097 | 0.004 | 0.129 0.196
DTT 0.524 0.125 0.099 0.012 -0.13 | -0.085 | 0.008 | 0.109 0.202
CP 0.193 0.174 0.139 0.016 | -0.228 | -0.142 | 0.029 | 0.169 0.262
MW 0.289 0.164 0.13 0.009 | -0.213 | -0.118 | 0.011 | 0.156 0.243

Table A5. Median model performance over entire data set, weekly energy predictions, 9-month training
period, 7-month prediction horizon

Model r nRMSE relMAE relTotErr 2.50% 10% 50% 90% 97.50%
PAM 0.349 0.134 0.104 0.026 | -0.136 | -0.104 | 0.015 | 0.128 0.208
LBNL 0.518 0.136 0.106 0.013 | -0.152 | -0.079 | 0.014 | 0.125 0.19
DTT 0.652 0.102 0.09 0 -0.14 | -0.098 | -0.004 | 0.114 0.169
CP 0.001 0.151 0.114 -0.013 -0.2 | -0.135 | -0.022 | 0.115 0.237
MW 0.293 0.152 0.108 -0.012 | -0.132 | -0.085 | 0.002 | 0.108 0.159

Table A6. Median model performance over entire data set, weekly energy predictions, 12-month

training period, 4-month prediction horizon

Model r nRMSE | relMAE | relTotErr 2.50% 10% 50% 90% | 97.50%
PAM 0.358 0.12 0.098 -0.008 | -0.129 | -0.091 | -0.034 | 0.142 0.226
LBNL 0.491 0.101 0.08 -0.013 -0.104 | -0.079 | -0.012 0.077 0.148
DTT 0.64 0.117 0.087 -0.01 | -0.074 | -0.066 | -0.011 | 0.093 0.128
CP 0.125 0.17 0.138 -0.036 | -0.188 -0.14 | -0.049 | 0.083 0.195
MW 0.396 0.132 0.108 -0.011 | -0.085 -0.08 | -0.014 | 0.054 0.116
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Table A7. Median model performance over entire data set, monthly energy predictions, 6-month

training period, 10-month prediction horizon

Model r nRMSE | relMAE | relTotErr 2.50% 10% 50% 90% | 97.50%
PAM 0.699 0.1 0.087 0.011 -0.072 | -0.055 0.017 0.09 0.124
LBNL 0.669 0.091 0.076 -0.008 | -0.092 | -0.065 0| 0.067 0.126
DTT 0.687 0.096 0.078 0.012 | -0.068 | -0.052 0.01 | 0.104 0.116
CP 0.413 0.143 0.107 0.016 | -0.142 | -0.082 | 0.013 | 0.131 0.162
MW 0.139 0.141 0.118 0.009 | -0.122 | -0.102 | 0.005 | 0.115 0.162

Table A8. Median model performance over entire data set, monthly energy predictions, 9-month

training period, 7-month prediction horizon

Model r nRMSE | relMAE | relTotErr 2.50% 10% 50% 90% | 97.50%
PAM 0.478 0.104 0.096 0.026 -0.08 | -0.057 0.012 0.072 0.129
LBNL 0.626 0.092 0.079 0.013 | -0.061 -0.05 | -0.004 0.06 0.084
DTT 0.603 0.082 0.076 0 -0.06 | -0.046 | -0.003 | 0.058 0.068
CP -0.008 0.106 0.083 -0.013 | -0.096 | -0.078 | -0.022 | 0.063 0.089
MW 0.495 0.127 0.102 -0.012 | -0.076 -0.06 | -0.007 | 0.054 0.067

Table A9. Median model performance over entire data set, monthly energy predictions, 12-month

training period, 4-month prediction horizon

Model r nRMSE | relMAE | relTotErr 2.50% 10% 50% 90% | 97.50%
PAM 0.892 0.104 0.096 -0.008 | -0.095 | -0.078 | -0.029 | 0.074 0.094
LBNL 0.949 0.082 0.078 -0.013 | -0.093 | -0.071 | -0.014 | 0.037 0.063
DTT 0.92 0.107 0.09 -0.01 | -0.069 | -0.045 | -0.002 | 0.068 0.074
CP 0.401 0.183 0.143 -0.036 | -0.108 | -0.095 | 0.028 | 0.201 0.241
MW 0.908 0.124 0.118 -0.011 -0.08 | -0.041 | 0.019 | 0.071 0.096
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Table A10. Median Relative Total Error for each model, predicted quantity, and training period

Relative 6-mo training period, 9-mo training period, 12-mo training period,
Performance 10-mo energy prediction | 7-mo energy prediction 4-mo energy prediction
Best LBNL (-.008) DTT (.000) PAM (-.008)

MW (.009) MW (-.012) DTT (-.010)

PAM (.011) LBNL (.013) MW (-.011)

DTT (.012) CP (-.013) LBNL (.013)
Worst CP (.016) PAM (.026) CP (.036)

The Median Relative Total Error metric is near O for all of the models, but all that shows
is that none of the models have a systematic tendency to over- or under-predict future
total energy use. Suppose a model over-predicts one building by 10% (0.1), gets one
exactly right, and under-predicts another by 10%. The relative total errors are thus 0.1,
0.1, and 0.0. The median of these is 0; that suggests that the modeling approach does
not have an overall bias, but is not a good way of quantifying the typical error.
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Appendix B: Building Characteristics

Table A-11 summarizes the known characteristics for the buildings that were included in

this study. Commercial building type is provided for 25 of the 29 buildings, and floor
area for 14 of the 29 buildings.

Table A-11. Floor area and commercial type for buildings included in the study

Location Area (sq.ft) Building Type
Northern Alberta, CA 2,000 | Restaurant
Southern British Columbia, CA 11,850 | Mixed-use campus building
Southern British Columbia, CA 19,400 | Mixed-use campus building
Southern Quebec, CA 97,450 | Mixed-use campus building
Southern Quebec, CA 96,250 | Mixed-use campus building
Southern Quebec, CA 200,000 | Mixed-use campus building
Southern Quebec, CA 86,200 | Mixed-use campus building
Southern British Columbia, CA 1,300 | Restaurant
Southwestern North Carolina, US 15,622 | Office building
Southern Florida, US 7,700 | Office building
Western Washington, US 12,000 | Office building
Northern CA, US 20,000 | Office building
Southern British Columbia, CA 206,400 | Sports Complex
Southern British Columbia, CA 15,670 | Restaurant

Northwestern Oregon, US

Office building

Northwestern Oregon, US

Office building

Northwestern Oregon, US

K-12 school

Southeastern Minnesota, US

Sports Complex

Northwestern Oregon, US

Office building

Northern Central Colorado, US

University dormitory

Southern Idaho, US

K-12 school

Southern Idaho, US

K-12 school

District of Columbia, US

Office building

District of Columbia, US

Office building

Southern Idaho, US

Hospital
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